Prints not sticking to the build plate, layer separation, rough surface, elephant foot: resin viscosity – the common denominator

When you scroll through the various Facebook group about resin printing, you see quite often questions about the following topics:

  • “my prints are not sticking to the build plate”
  • “my layers separate”
  • “my prints have a rough surface”
  • “I have a large elephant foot/squished bottom layers”
An example of all the problems shared in the FB groups. It is really not hard to find them.

In the first two cases, people often advise “increase your bottom layers!” and “increase your bottom exposure”, “lube FEP”, “sand your build plate!”.

But I think such advice is wrong and the best advice for all four cases should be “Introduce a light-off time”. Why? Let me walk you through a series of experiments and observations. It will be a long read, but bear with me – it is an actually simple puzzle just with multiple factors. And as we will see at the end, the same advice also applies to solving the rough surface case and also (partially) the elephant foot. We will also learn, that printing at layers thinner than 50 µm does not make much sense and it can actually degrade the print quality and precision.

Note that I have previously touched on this topic in my blog post Improving surface finish of hollowed SLA 3D prints: one aspect of blooming.

Continue reading “Prints not sticking to the build plate, layer separation, rough surface, elephant foot: resin viscosity – the common denominator”

Testing 3D-printing service offered by JLC PCB on functional prints

About a month and a half ago I was offered to test the new 3D-printing service of JLC PCB (my got-to PCB manufacturer) before it was open to the public. They offered me 30 USD off the testing order, so I thought – let’s give it try! In this rather short blog post, I will give my impression of the print quality and service as a whole.

The test components
Continue reading “Testing 3D-printing service offered by JLC PCB on functional prints”

Hand-on experiences with Mercury X Washing & Curing station and 15 USD must-have upgrades

I’ve been in resin printing for over two years now. I have always refused to get a curing station. I disliked the available solution and was happy with my setup of several Lock’n’lock containers with IPA and a simple curing box made out of IKEA Lixhult. If you are wondering why I disliked the current solutions, read the ending of this post where I describe my dream machine.

However, my containers got small and I was considering getting bigger ones. It was at the time when Elegoo announced Mercury X pre-order. I thought “Ok, let’s give it a shot”.

I received my unit in September and I’ve been using it on a daily basis. Current experiences? It works pretty well and I am happy about it. I wouldn’t go back to my “dumb containers with IPA”. If you would like to see a full review that lists all the features and gives you the basic idea, please refer to other reviews: e. g., a nice review by Thomas Sanladerer.

In the rest of the post, I will show you what I dislike about the machine and how I improved it (at least a little) to make it suitable for heavy and convenient usage. Please note that overall I like the machine and I would advise my old me to buy it.

Problem #1: Only a single cleaning container

This is the biggest flaw of the machine – there is only a single container for IPA & cleaning. Do you ask why you would need more containers? It is more economical.

Continue reading “Hand-on experiences with Mercury X Washing & Curing station and 15 USD must-have upgrades”

A better way of making silicone components using a resin printer: Injection molding for less than 50 USD

Not so long ago I published a blog post showing how I make silicone components. If you haven’t read it I recommend you go through it first. I won’t cover all the steps for making the components — I will just discuss the game-changing improvements in my setup.

You might be asking what might be such a game-changer that it deserves a separate blog post. Previously, I designed open molds and pour silicone into them. Now I have found a way how to inject the silicone into a closed mold.

Injecting the silicone makes the whole process faster, cleaner, and also, more reliable (no more trapped bubbles!). On top of that, it allows me to design more complex molds which can, e.g., make removal a much more pleasant process.

Continue reading “A better way of making silicone components using a resin printer: Injection molding for less than 50 USD”

Easy procedure for saving LCD on MSLA 3D Printer After a Resin Leak

Resin 3D printers are awesome, however, the whole process is extremely messy. Especially when an accident happens and the resin leaks from the vat all over the printer.

When this happens mid-print, it usually means one thing – the resin will leak onto the precious LCD of the printer and cure. This means one thing – the UV light will be blocked by the cured parts and you will probably experience holes in your printed parts.

Usually, the people on Facebook advise you to scrape the resin away with a plastic razor. This usually works for small leaks, but it doesn’t work well on large leaks.

I experienced a resin leak recently on my Elegoo Saturn. Scraping the resin was not leading anywhere and I managed to scratch the polarizer film on top of the LCD. Therefore I stopped and I decided to make a (successful experiment): use acetone to dissolve the cured resin. It worked flawlessly!

The method is based on the observation that resin softens in an acetone bath, but the polarizer film seems not to dissolve in acetone.

Continue reading “Easy procedure for saving LCD on MSLA 3D Printer After a Resin Leak”

Improving surface finish of hollowed SLA 3D prints: one aspect of blooming.

Today, I want to talk about an interesting phenomenon I noticed when printing hollow objects. A simple procedure can drastically improve the surface finish of your prints:

An improvement from left to right that can be achieved
Continue reading “Improving surface finish of hollowed SLA 3D prints: one aspect of blooming.”

Fixing the “backlight always on” problem on Elegoo Saturn

Recently, I noticed in the Elegoo Saturn Facebook groups that many users report a broken Saturn. The symptoms are that the UV backlight is always on. Elegoo has been really helpful and it seems that when a user reports the problem, they send a replacement mainboard.

I was wondering what causes the problems, so I reached out to a few of them if they would be willing to send me the broken motherboard. One of them did (thank you!) and I started to investigate what’s wrong. TLDR: The fix is easy and costs you nothing if you know how to solder.

Continue reading “Fixing the “backlight always on” problem on Elegoo Saturn”

I designed and 3D printed a full-scale wind turbine on an SLA printer

Back in high school, I wrote SOČ (student-paper) about designing and building a small horizontal wind turbine (available here, only in Czech). It was an interesting experience and I learned a lot about aerodynamic. Ten years passed and I decided to revisit the idea of having a small DIY wind turbine. However, with a modern spin on it in the form of 3D printing the whole full-scale turbine on an SLA printer. Spoiler: it turned out perfectly!

Finished turbine. Such a beaty, isn’t it?
Read more about the desing and manfacturing of the turbine

Full CAD model of Elegoo Saturn

Having a reference model of the printer is suitable when I design new components to tune my printer. I publish the model, so the others can benefit from it! You will find the model below:

If you like the model, you can consider supporting me on Ko-fi or buy something from me on my Tindie store.

PS: Be sure to follow me on Twitter and Instagram if you are interested in knowing what I am up to.

I tested how much moisture SLA printers resins absorb. How it changes them?

Recently, I discovered Resione resins. They have a wide variety of resins. They also have a series of tough and flexible resins. They also have an EU distribution center, so the resin arrives quickly and you don’t have to care about customs. Overall, the resins seemed nice. I might make a separate blog post about their resins in the future.

When I was working on a big project (blogpost upcoming, sneak-peaks on my Twitter and Instagram) I decided to use Resione M68 — tough snow-white resin. The parts I printed were thin-wall parts (wall thickness of 0.5–1 mm). They also have a lot of internal cavities where a liquid can be trapped. After printing, the pieces looked great! However, it was a rainy day and the air humidity increased up to 80 %. The next day I found my parts deformed like this:

It seems that the Resione M68 absorbs a lot of moisture and the large flat areas between infill of the component expand, thus they form bumps. So I took one piece and soaked it into the water for 20 hours and it even cracked.

It is a well-known phenomenon, that some plastics absorb moisture. There is even an ISO standard 15512:2019 for measuring this (which I don’t have access to, unfortunately). Since my components will be exposed to the weather condition, I decided to make an experiment to determine which resins would be suitable and which not.

Continue reading “I tested how much moisture SLA printers resins absorb. How it changes them?”